Electrical properties of Indium Antimonide (InSb)

InSb - Indium Antimonide

Electrical properties

Basic Parameters
Mobility and Hall Effect
Transport Properties in High Electric Fields
Impact Ionization
Recombination Parameters

Basic Parameters

Breakdown field ≈103 V cm-1
Mobility Electrons ≤7.7·104 cm2V-1s-1
Mobility Holes ≤850 cm2V-1s-1
Diffusion coefficient Electrons ≤2·103 cm2s-1
Diffusion coefficient Holes ≤22 cm2s-1
Electron thermal velocity 9.8·105 m s-1
Hole thermal velocity 1.8·105 m s-1

Mobility and Hall Effect

Electron Hall mobility versus temperature for different doping levels and different compensation ratios
Curve Nd (cm-3) θ = Na/Nd
1. 3.85·1014 0.5
2. 8.5·1014 0.88
3. 9.5·1014 0.98
4. 1.35·1015 0.99
(Yaremenko et al. [1973]).
Electron mobility versus temperature (high temperatures).
Solid line is theoretical calculation for electron-drift mobility.
Experimental data are Hall mobilities.
(Rode [1971]).
For pure n-InSb at T ≥ 200K:
µnH≈7.7·104(T/300)-1.66 (cm2 V-1 s-1).
Electron mobility versus electron concentration. T = 300 K
(Litwin-Staszewska et al. [1981]).
Electron mobility versus electron concentration. T = 77 K
(Litwin-Staszewska et al. [1981]).
The electron Hall factor versus carrier concentration. T = 77 K
(Baranskii and Gorodnichii [1969]).


Maximal electron mobility for pure n-InSb
77 K
1.2·106 cm2V-1s-1
300 K
7.7·104 cm2V-1s-1
Maximal electron mobility for InSb grown on GaAs substrate
77K
1.5·105 cm2V-1s-1 (no= 2.2·1015 cm-3)
300 K
7.0·104 cm2V-1s-1 (no= 2.0·1016 cm-3)
Maximal electron mobility for InSb grown on InP substrate
77 K
1.1·105 cm2V-1s-1
300 K
7.0·104 cm2V-1s-1


Hole Hall mobility versus temperature for different hole concentrations.
po (cm-3):
1. 8·1014;
2. 3.15·1018;
3. 2.5·1019;
(Zimpel et al. [1989]) and (Filipchenko and Bolshakov [1976]).
For pure p-InSb at T > 60K:
µpH≈850(T/300)-1.8 (cm2V-1s-1)
Hall mobility versus hole concentrations:
1. 77 K (Filipchenko and Bolshakov [1976]);
2. 290K (Wiley [1975]).
The hole Hall factor versus carrier concentration, 77 K
(Baranskii and Gorodnichii [1969]).

Transport Properties in High Electric Fields

Field dependence of the electron drift velocity, 77 K.
Solid lines is the Monte Carlo calculation.
Points are experimental data.
(Asauskas et al. [1980]).
Field dependence of the electron drift velocity, 77 K.
Solid lines is the Monte Carlo calculation.
Points are experimental data.
(Neukermans and Kino [1973]).
Fraction of electrons in the L-valley as a function of electric field F, 77K
(Asauskas et al. [1980]).
Frequency dependence of the efficiency in LSA mode
Fo = F + F1sin(2π·ft):
Fo= 2.5 kV cm-1
(Prokhorov et al. [1977]).

Impact Ionization

The dependence of generation rate for electrons gn versus electric field F, 300 K
(Vorob'ev et al. [1983]).
For 300 K, for 30 V/cm < F < 300 V/cm:
gn(F) = 126·F2exp(F/160) (s-1),
where F is in V cm-1.
The dependence of generation rate for electrons gn versus electric field F, 77 K
(Krotkus and Dobrovolskis [1988]) and (Vorob'ev et al. [1988]).
The dependence of ionization rates for electrons αi versus the electric field F, T=78 K
(Gavrushko et al. [1978]).
The dependence of generation rate for holes gp versus the electric field F, T =77K
(Adomaitis et al. [1985]).

Recombination Parameters

For pure InSb at T≥250K lifetime of carrier (electrons and holes) is determined by Auger recombination:
τn = τp ≈1/C ni2,
where C≈5·10-26 cm-6 s-1 is the Auger coefficient.
ni is the intrinsic carrier concentration.
For T = 300 K τn = τp≈5·10-8 s
For T = 77K
n-type: the lifetime of holes
τp ~ 10-6 s
p-type: the lifetime of electrons
τn ~ 10-10 s


Temperature dependence of surface recombination velocity for p-InSb.
(Euthymiou et al. [1981]).
Temperature dependence of surface recombination velocity for n-InSb.
(Skountzous and Euthymiou [1976]).


Radiative recombination coefficient ~5·10-11 cm3s-1
Auger coefficient ~5·10-26 cm6s-1